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Abstract: Progressive accumulation of misfolded amyloid proteins in intracellular and extracellular
spaces is one of the principal reasons for synaptic damage and impairment of neuronal
communication in several neurodegenerative diseases. Effective treatments for these diseases
are still lacking but remain the focus of much active investigation. Despite testing several
synthesized compounds, small molecules, and drugs over the past few decades, very few of them
can inhibit aggregation of amyloid proteins and lessen their neurotoxic effects. Recently, the natural
polyphenol curcumin (Cur) has been shown to be a promising anti-amyloid, anti-inflammatory and
neuroprotective agent for several neurodegenerative diseases. Because of its pleotropic actions on the
central nervous system, including preferential binding to amyloid proteins, Cur is being touted as a
promising treatment for age-related brain diseases. Here, we focus on molecular targeting of Cur to
reduce amyloid burden, rescue neuronal damage, and restore normal cognitive and sensory motor
functions in different animal models of neurodegenerative diseases. We specifically highlight Cur as
a potential treatment for Alzheimer’s, Parkinson’s, Huntington’s, and prion diseases. In addition,
we discuss the major issues and limitations of using Cur for treating these diseases, along with ways
of circumventing those shortcomings. Finally, we provide specific recommendations for optimal
dosing with Cur for treating neurological diseases.

Keywords: neurodegenerative diseases; amyloidosis; curcumin; neuroinflammation; anti-amyloid;
molecular chaperones; natural polyphenol

1. Introduction

Aggregation of misfolded amyloid proteins and their deposition in intracellular and extracellular
spaces of the central nervous system (CNS) are associated with several neurological diseases, including
Alzheimer’s (AD), Parkinson’s (PD), Huntington’s (HD) and prion diseases [1,2]. Most of these
diseases are age-related, complicated disorders which involve a multitude of causative factors,
including neuroinflammation [3], oxidative damage and deposition of misfolded protein aggregates [4].
These events can occur separately or together or in causing neuronal degeneration, which leads to
perturbation of neuronal communications, resulting in long-term cognitive and motor dysfunction.
The neuropathological onset of these diseases may have occurred long before the manifestation of
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overt symptoms, which underscores the need for early diagnosis and therapy. Although there have
been several studies using therapeutic strategies involving anti-amyloids, anti-inflammatory agents,
and small molecule drugs [5], to slow or halt the progression of neurological diseases, none of them
have proven effective without serious effects or abbreviated half-lives. As a potent anti-amyloid
natural polyphenol, curcumin (Cur) has gained considerable attention as a promising therapeutic
agent for AD and other complicated neurological diseases [6,7]. Although Cur has been considered a
wonder molecule for use in Indian and Southeast Asian traditional Ayurvedic medicine for a very long
time, primarily due to its anti-inflammatory or wound-healing properties [8], its anti-amyloidogenic
properties have only been discovered recently [9]. Cur binds to, and inhibits, amyloid-beta protein
(Aβ) aggregation, and improves motor coordination and cognition in animal models of AD and
other neurodegenerative diseases [9,10]. However, the poor water solubility, instability in body
fluids, rapid degradation, and limited bioavailability has curtailed the use of Cur as a therapeutic for
neurological diseases [11].

The outlook for using Cur as a therapeutic agent has changed dramatically with the discovery
of new formulations for Cur, including liposome-Cur, Cur-conjugated with nanogel, dendrimer-Cur,
Cur with silver, or gold nanoparticles and Cur in solid lipid nanoparticles (SLN) [11]. The SLN formula
of Cur (nanoCur) has been shown to increase its bioavailability and therapeutic value for neurological
diseases [12–14]. This review article addresses the basic understanding of the molecular signaling
mechanisms of Cur therapy and its potential impact on major neurological diseases, such as AD, PD,
HD, and prion diseases, along with recent findings from our laboratory.

2. Curcumin: The Major Active Polyphenol of Turmeric

2.1. Source

The rhizomes of the Curcuma longa (family: Zingiberaceae) herb is the source of turmeric
(Figure 1A–C). The principal yellow pigment present in the turmeric root is Cur (Figure 1E),
which was identified in early 1900 by Lampe and Milobedzka. Its structure and biochemical
analyses revealed that about 2.5–6% of turmeric contains pure Cur [15] (Table 1). The commercial
turmeric extract contains many other components, including three main types of curcuminoids,
such as (a) Cur-I (diferuloylmethane, ~77%); (b) Cur-II (demethoxyCur, DMC, ~17%); and (c) Cur-III
(bisdemethoxyCur, BDMC, ~3%) (Figure 1). In addition, four identified turmerones (α-turmerone,
β-turmerone, ar-turmerone, and aromatic-turmerone), as well as α-santalene, aromatic-curcumene,
curlone, and other compounds were also found in turmeric extract (Figure 1D).

2.2. Chemistry of Cur

Cur is a natural polyphenol, chemically known as diferuloylmethane (C21H20O6), with molecular
mass of 368.37 g/mol. Its International Union of Pure and Applied Chemistry (IUPAC) name is
1,7-bis (4-hydroxy-3-methoxy phenyl)-1,6-heptadiene-3,5-dione. There are two aryl rings containing
orthomethoxy phenolic OH-groups, which are symmetrically linked to a β-diketone moiety (Figure 1E).
The melting point of Cur is ~183 ◦C. Cur can co-exist with several tautomeric forms, of which two
predominant forms are 1,3-diketo form and 1,3-dienol form (Figure 1E). Although in the solid phase
or solution the enol form is more stable, their relative concentrations may vary with temperature,
polarity of solvent, pH, and substitution of the aromatic rings [16,17].
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Figure 1. Chemical structure of Cur and its derivatives. (A–C) Curcuma longa, its rhizomes and 
turmeric extract; (D) Different chemical components of turmeric extract; (E) Chemical structure of 
principal ingredients of curcuminoid; (F) pathway of Cur-biosynthesis; and (G) Cur metabolism in 
our body. 

Table 1. The chemical and biophysical properties of curcuminoid [15]. 

Characteristics Cur-I Cur-II Cur-III 
Common Name Cur DemethoxyCur BisdemethoxyCur 
Chemical Name Dicinnamoyl methane 4-OH cinnamoyl methane Bis-4-OH cinnamoyl methane 
Color Bright orange-yellow Bright orange-yellow Bright orange-yellow 
Amount Present (%) 77 17 3 
Molecular Mass (g/mol) 368.4 338.0 308.1 
Melting Point (°C) 183.0–186.0 172.5–174.5 224.0 
Neutral Solvent (water) Poorly soluble Poorly soluble Poorly soluble 
Solubility in Organic Solvents Soluble Soluble Soluble 
Solubility in Hexane or Ether Insoluble Insoluble Insoluble 
Excitation/Emission in 420/530 nm 420/530 nm 420/530 nm 
Excitation/Emission in Alcohol 536–560 nm Unknown Unknown 

The amounts of keto-enol forms in Cur also play vital roles in the physicochemical properties, 
biological functions, and anti-oxidant activities [18]. The keto form is predominant in acidic (pH 3) to 
neutral conditions, while, the enol form is predominant in alkaline solutions (pH > 8), and is a potent 
free radical-scavenger [15]. Cur is hydrophobic in nature, so has poor solubility in water or 
hydrophilic solutions, although the solubility can be improved in basic conditions. Cur shows greater 
solubility in organic solvents (Figure 2), such as ethanol, methanol, isopropanol, acetone and 
dimethyl-sulfoxide (DMSO), whereas it is moderately soluble in hexane, cyclohexane, 
tetrahydrofuran and dioxane [15]. 

 

Figure 2. Curcumin solubility in different solvents. Please note that Cur is more soluble in methanol 
than in phosphate buffer saline (PBS), NaOH or dimethyl-sulfoxide (DMSO). 

Figure 1. Chemical structure of Cur and its derivatives. (A–C) Curcuma longa, its rhizomes and turmeric
extract; (D) Different chemical components of turmeric extract; (E) Chemical structure of principal
ingredients of curcuminoid; (F) pathway of Cur-biosynthesis; and (G) Cur metabolism in our body.

Table 1. The chemical and biophysical properties of curcuminoid [15].

Characteristics Cur-I Cur-II Cur-III

Common Name Cur DemethoxyCur BisdemethoxyCur
Chemical Name Dicinnamoyl methane 4-OH cinnamoyl methane Bis-4-OH cinnamoyl methane
Color Bright orange-yellow Bright orange-yellow Bright orange-yellow
Amount Present (%) 77 17 3
Molecular Mass (g/mol) 368.4 338.0 308.1
Melting Point (◦C) 183.0–186.0 172.5–174.5 224.0
Neutral Solvent (water) Poorly soluble Poorly soluble Poorly soluble
Solubility in Organic Solvents Soluble Soluble Soluble
Solubility in Hexane or Ether Insoluble Insoluble Insoluble
Excitation/Emission in 420/530 nm 420/530 nm 420/530 nm
Excitation/Emission in Alcohol 536–560 nm Unknown Unknown

The amounts of keto-enol forms in Cur also play vital roles in the physicochemical properties,
biological functions, and anti-oxidant activities [18]. The keto form is predominant in acidic (pH 3) to
neutral conditions, while, the enol form is predominant in alkaline solutions (pH > 8), and is a potent
free radical-scavenger [15]. Cur is hydrophobic in nature, so has poor solubility in water or hydrophilic
solutions, although the solubility can be improved in basic conditions. Cur shows greater solubility in
organic solvents (Figure 2), such as ethanol, methanol, isopropanol, acetone and dimethyl-sulfoxide
(DMSO), whereas it is moderately soluble in hexane, cyclohexane, tetrahydrofuran and dioxane [15].
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Interestingly, Cur is a natural fluorophore, with its absorption noted in polar solvents ranging
from 408 to 540 nm [16,19]. The maximal fluorescence intensities of Cur is noted in chloroform,
acetonitrile, and in acetone to be in the range of 494 to 538 nm, whereas in alcohols and dimethyl
formamide (DMF), the fluorescence spectra may shift from 536 to 560 nm [15]. In contrast, in non-polar
solvents (e.g., benzene, hexane and cyclohexane), sharper peaks (~460 nm) are observed, because of
the blue-shifting of its absorption spectra [15] (Table 1).

2.3. Cur Biosynthesis

Cur may be biosynthesized via two ways (Figure 1F). Phenylalanine is the precursor
molecule, and the cinnamic acid is the first byproduct of the Cur biosynthetic pathway (Figure 1F).
When cinnamic acid reacts with 5-malonyl CoA, it forms bis-dehydroxybisdesmethoxy-Cur.
This compound can then be converted to bisdemethoxy-Cur (BDMC) and demethoxy-Cur (DMC),
which can be transformed into Cur (Figure 1F). The second pathway involved in Cur synthesis is the
production of cinnamic acid, which is then converted to p-coumaric acid, and ferulic acid. The ferulic
acid reacts with 5-malonyl CoA to form Cur [20,21] (Figure 1F).

2.4. Cur Metabolism

The metabolism of Cur, including its pharmacokinetics (PK) and pharmacodynamics (PD) has
been studied by several investigators in rodents and in human [22–25]. The profile of Cur metabolites
depends on the route of administration. For example, oral administration of Cur immediately reaches
the liver, following intestinal absorption, and become sulfated or glucuronidated by liver-specific
enzymes, such as sulfatase and glucuronidase, respectively (Figure 1). The major Cur metabolites
in animal liver are the glucuronides of tetrahydrocurcumin (THC) and hexahydrocurcumin (HHC),
whereas the traces amounts of dihydroferulic acid and ferulic acid are also found as the minor
metabolites [26]. However, both these glucuronides, and sulfate conjugates are water soluble,
and found in the urine of rats. According to Pan and colleagues, 99% of Cur in plasma was present
as glucuronide-conjugates, which suggests that Cur first undergoes extensive reduction by alcohol
dehydrogenase, followed by conjugation [27]. In contrast, when Cur is administered intravenously
(i.v.), or intraperitonally (i.p.), it can form more stable, and water soluble Cur-derivatives, such as
THC, HHC and octahydrocurcumin (OHC), which are easily eliminated from body through urine [27].
In addition, after absorption, Cur is readily catabolized to several degradation products, such as
ferulic aldehyde, ferulic acid, ferulyol methane and vanillin (Figure 1G). A pharmacokinetic (PK) study
revealed that the maximum concentration of curcuminoid conjugates in plasma was found within 1 h
after its oral administration [28], but whether these Cur-metabolites are active, in a manner similar
to free Cur, is not yet clear. However, some experimental data demonstrated that Cur-glucuronides
and THC are less active than Cur itself [26], but other studies reported that they may be more active
than Cur, because of their greater stability in body fluids, [29]. For example, THC shows better
anti-diabetic and anti-oxidative effects than Cur in a rat model of type-2 diabetic [30], whereas Sandur
and colleagues reported that THC has much lower anti-inflammatory and anti-proliferative activities
than Cur [31].

3. Pleotropic Actions of Cur on Nervous System

3.1. Anti-Amyloid Properties

The most promising application of Cur in neurodegenerative diseases therapy is its anti-amyloid
property [9,32]. Its preferential binding and potent inhibitory effects on amyloid aggregation has
attracted researchers to investigate its beneficial roles for treating neurological diseases [13,33]. It not
only binds with Aβ-oligomers and fibrils in AD [9,34], but also binds readily with other amyloid
proteins, such as α-synuclein (α-syn) in PD [35], huntingtin (HTT) in HD [36], phosphorylated tau
(p-tau) in tauopathies and AD [37], as well as with prion proteins in prion diseases [38] (Table 2).
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Most interestingly, the high lipid content of brain tissue allows lipophilic Cur molecules to cross the
blood brain barrier (BBB) and inhibit the aggregation of amyloid proteins.

Table 2. Anti-amyloid activities of Cur in major neurodegenerative diseases.

Proteins Diseases Nature of Binding of Cur Outcomes Ref.

Aβ AD With amino acid 16–21 of Aβ
Inhibits oligomer and fibril formation, thus
decrease Aβ induced neurotoxicity [9,13,34]

Tau Tauopathies,
AD

In the microtubule-binding region
of tau

Inhibits phosphorylated tau, thus decrease
neurofibrillary tangle [12,37]

α-Syn PD In the hydrophobic no Aβ

component region

Inhibits α-syn oligomers and fibril
formation, thus decrease α-Syn induced
oxidative damage

[35,39]

HTT HD Unknown Lower doses (nM) decrease HTT aggregates [36,40]

Prion Prion α-Helical intermediate and to the
amyloid form of prion protein Inhibits PrPsc accumulation [38,41]

3.2. Potent Antioxidant

Due to the high metabolic rate, increased demand of O2, large quantities of membrane
phospholipids and polyunsaturated fatty acids (PUFA), and lower levels of anti-oxidants relative to
other organs, the CNS is particularly vulnerable to oxidative damage (Figure 3). All these factors
significantly contribute to increase reactive oxygen species (ROS) and peroxynitrite (ONOO-) levels,
which lead to inflammation, mitochondria dysfunction and, ultimately, induce neuronal death.
Chronic progressive neurological diseases induce inflammation, oxidative stress, lipid peroxidation,
DNA damage, oxidized protein products [42].
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Figure 3. Amelioration of oxidative stress by Cur in brain. The CNS is vulnerable to oxidative stress
due to high metabolic rate, which causes higher O2 demand. This leads to an increase in oxidative
stress in the brain tissue. Whereas Cur, as a potent free radical scavenger, can ameliorate these effects.

Chronic oxidative stress has also been associated with induction of misfolded protein aggregates
in brain tissues [43]. To counter this, Cur, as a potent anti-oxidant, can scavenge superoxide anions
(O2
−) and hydroxyl radicals (OH−), and increase anti-oxidant levels, such as glutathione (GSH) [44].

Cur also can stabilize the brain anti-oxidant enzyme systems, including activation of superoxide
dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST) [45]. It also protects
cells from lipid peroxidation, DNA damage, and protein oxidation or protein carbonylation [46]
(Figure 3). Although most researchers describe oxidative stress as an imbalance of pro-oxidants
and antioxidants, the actual mechanism involves a disruption of redox signaling and control [47,48].
Therefore, measurement of the signaling proteins associated with oxidative stress, as well as the ROS
and anti-oxidant system, are required to investigate the effectiveness of Cur treatments.
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3.3. Anti-Inflammatory Agent

Next to its anti-oxidant properties, the second most important reason for interest in
Cur as a therapy for neurological diseases is its ability to reduce neuroinflammation [33,49].
Several reports suggest that Cur is a potent anti-inflammatory agent, which can downregulate many
neuroinflammatory marker proteins, such as nuclear factor kappa beta (NF-κB) [45]. Cur also
inhibits phospholipases and arachidonic acid metabolic enzymes, such as cyclooxygenase-2 (COX-2),
5-lipoxygenase (5-LOX) [50]. In addition, it reduces the levels of several cytokines, such as tumor
necrosis factor (TNF), interleukin-1 (IL-1) and interleukin-6 (IL-6) [51,52] (Figure 4). Similarly, Cur is
also an agonist for peroxisome proliferator-activated receptor gamma (PPARγ) which can inhibit the
pro-inflammatory pathways [53].
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inhibits inflammatory chemokines, iNOS levels and inhibits transcription factors, such as NF-κB.

3.4. Modulate Activity of Molecular Chaperones

Cellular protein quality is control by a set of proteins, called molecular chaperones. They are very
important to reverse the unfolded or misfolded proteins to their native form. One of the important
molecular chaperones are the heat shock proteins (HSPs). These proteins are downregulated in
different neurological diseases [54]. Recently, we, and others, have shown that Cur is neuroprotective
through the activation of molecular chaperones, such as HSP70, HSP90, HSP60 and HSP40 and heat
shock cognate 70 (HSC70) [55].

3.5. Increase Neurotrophins, Neurogenesis and Synaptogenesis

Mounting evidence indicates that significant declines in neuronal growth factors, such as NGF,
BDNF, GDNF, as well as other supporting factors, such as PDGF can lead to synaptic damage and
neuronal death. Diets containing Cur have shown to stimulate NGF, BDNF, GDNF, PDGF levels
in vivo [56]. Cur also enhances neurogenesis, synaptogenesis and improves cognition in rats [57],
which may be due to promoting these neurotrophic factors. Furthermore, improved memory functions
in animal models of neurological diseases have been observed after Cur therapy, which may be due to
increase levels of these neuronal growth factors. The pre-synaptic and post-synaptic markers, such as
synaptophysin and PSD95, are also restored in different animal models of neurodegenerative diseases
after Cur treatment [58] (Figure 5).
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3.6. Metal Chelator

Heavy metals, such as aluminum (Al), copper (Cu), cadmium (Cd), iron (Fe), lead (Pb), manganese
(Mn), and zinc (Zn) can induce misfolded protein aggregation and production of ROS in different
neurological diseases [59,60]. The presence of two phenolic (OH) groups (see Figure 1) and one active
methylene (CH2) group in a Cur makes it an excellent ligand for any metal chelation [61]. For example,
Cur can interact with Cd and Pb and prevent neurotoxicity caused by these metals [62]. In fact,
Cur effectively binds to Cu, Fe, and Zn, and makes them unavailable to induce amyloid protein
aggregation. In addition, most of these heavy metals can induce neuroinflammation by increasing the
expression of NF-κB levels, whereas it is speculated that Cur suppresses inflammation by inhibiting
the NF-κB levels, perhaps via metal chelation [7,63]. The Cur-metal complexes also show greater
anti-oxidant properties. For example, Cu-Cur complexes scavenge ROS more efficiently than Cur
alone [61]. Similarly, Mn-Cur complex exhibits a more potent neuroprotection than Cur, as shown in
both in vitro and in vivo experiments [18,61] (Figure 5).

3.7. Cur Regulates Epigenetics

Epigenetics play vital roles in gene expression in different disease conditions. Cur plays significant
regulatory roles in modulating the methylation, acetylation, ubiquitination, and phosphorylation status
of histone and other DNA-binding proteins [64]. For example, when the lysine at position 4 in histone-3
becomes methylated (H3K4me3), it activates the gene, whereas the lysine methylation at position
27 in the same protein (H3K27me3) silences the gene [65]. Similarly, histone acetylation produces
increase in gene expression, whereas deacetylation has opposite effect. The histone acetylation is
governed by histone acetyltransferase (HAT) and the enzyme involved deacetylation is the histone
deacetylase (HDAC).

However, the epigenetic role of gene expression of Cur has been shown by inhibiting HAT activity
and activating HDAC in AD (Figure 6). Cur can directly bind to HAT at a nM levels and can inhibit
the catalytic activity of HATs [64], thus inhibiting nuclear histone acetylation. Decreases in histone
acetylation reduce the inflammation via NF-κB pathway in some brain diseases [45].
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3.8. Improving Cerebral Circulation

Decreased cerebral circulation in aging brain causes an increase in risk of cerebral hemorrhage and
stroke, whereas Cur has an influential role on cerebral circulation [66]. It can reduce the adhesion of
platelets in brain microvascular endothelial cells (BMECs) [67,68], and also can inhibit the inflammation
of blood vessels, which may improve overall cerebral circulation [69].

4. Limitations of Cur Delivery

Cur has been delivered in animals and humans by several means, including oral, subcutaneous,
intraperitoneal, intravenous, nasal, and topical deliveries to achieve its beneficial effects. The major
concerns about Cur delivery involve its instability and poor solubility in most body fluids,
which reduces its absorption through the gastrointestinal (GI) tract, and facilitates its metabolism and
degradation, as well as rapid elimination from the body, mitigating its bioavailability [70]. For example,
researchers were unable to detect free Cur from the plasma of AD patient in a clinical trial in
which 2–4 g Cur were delivered daily [71]. It is hypothesized that after absorption, Cur becomes
rapidly glucuronidated in the liver by glucuronidase, which makes it water soluble, and, thus,
promotes its rapid excretion through the urine [71,72]. Similarly, oral administration of 1 g/kg
dose of Cur causes excretion of ~75% of Cur through feces, with negligible amounts in the urine [73].
Similarly, approximately 40% of the Cur was found in the feces, along with Cur-glucuronide and
sulfates in the urine when 400 mg per day Cur is administered orally [26]. Most of the Cur is excreted
within 72 h when lower doses (10 or 80 mg) are administered, whereas Cur remains in tissues for
12 days after oral administration of higher (400 mg) doses [24]. In contrast, no Cur or its metabolites
were found in urine in a clinical trial when 36 and 180 mg was given daily for 4 months by oral
administration, but some of these metabolites was excreted in the feces [74]. Clearly, major challenges
for successful Cur delivery and its clinical applications for neurological diseases will require a special
formula, which can optimize its solubility, stability, and bioavailability. In addition, it is critical to
determine the amount of Cur required to prevent further neurodegeneration or to rescue degenerating
neurons in neurological diseases.

5. Nano-Technological Approaches for Cur Delivery

To improve the bioavailability of Cur, numerous approaches and many promising novel
formulations have been undertaken by several investigators, which included the use of nanoparticles,
liposomes, micelles, and phospholipid complexes, nanogels, noisomes, cyclodextrins, dendrimers,
silver, gold, and structural analogues of Cur [11] (Table 3). Most of these novel delivery mechanisms
increase Cur bioavailability by providing longer circulation, better permeability, and/or resistance to
metabolic processes.
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Table 3. Different components used to increase Cur solubility and bioavailability. Scientists used
different materials, including adjuvants, proteins, lipid nanoparticles, and synthetic materials to
increase Cur solubility [75].

Materials Compounds Used with Cur

Adjuvant Piperine

Bio-conjugates Turmeric oil, glycine, alanine, EGCG

Lipids Phospholipid, liposome, oil body emulsion

Nanoparticles GMO, Chitosan, cyclodextrin, PLGA, silica, PHEMA, gold, silver, casein,
orange gel-based nano emulsion, dendrimer, solid lipid particles

Protein BSA, soy protein isolated

Others Hyaluronic acid, hydrogel, polymer, PEG-PEI emulsion, polymer encapsulated,
beta-lactoglobulin

5.1. Adjuvants

Conjugation of piperine (extracted from black pepper, a well-known inhibitor of hepatic and
intestinal glucuronidation of Cur) with Cur increase free Cur levels in animals and human plasma [76].
For example, co-supplementation with 20 mg of piperine with 2 g of Cur significantly increased the
bio-availability of Cur by 2000 folds in a clinical trial [75] (Figure 7).
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5.2. Bio-Conjugates

Several bio-conjugates (e.g., turmeric oil, glycine, alanine, and/or piperic acid) can be used
to increase the cellular uptake and greater bioavailability of Cur [26] (Table 3). For example,
when curcuminoid is combined with turmeric oil (turmerons) in a specific proportion to make
Biocurcumax-95 (BCM-95), the Cur-bioavailability was 7-8 times more than that of natural Cur [77]
(Table 4).

Table 4. Average values of pharmacokinetic parameters of Cur-lecithin-piperine and BCM-95®

(Biocurcumax™).

Parameters Tmax Cmax Ke t1/2 AUC (o.inf) Cl (Observed)/F Vz (observed)/F

Cur 2 149.8 0.296 2.63 461.86 0.006735 0.026362
BCM—95 RCG 3.44 456.88 0.26 4.96 3201.28 0.001682 0.006784

Tmax: Time of peak plasma concentration, Cmax: Peak plasma concentration, Ke: Elimination rate constant, t1/2:
Half-life, AUC (0-infinity): Area under curve from ‘0’ h to infinity, Cl/F: Clearance/Bioavailability, Vd/F: Volume
of distribution/bioavailability [77].

This formula has better absorption into blood and longer retention time compared to natural
Cur. It also increases the activity of Cur up to a 700%, as confirmed by clinical trials [77].
Similarly, when Cur was bio-conjugated with glycine, alanine, and/or piperic acid, these formulae
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improved the anti-microbial properties over natural Cur, which suggests that these formulae promote
cellular uptake, reduced their degradation, and increased Cur activity inside the cells [78]. In another
study, when epigallocatechin-3-gallate (EGCG, a polyphenol of green tea) was conjugated with Cur,
this formula also increased Cur uptake, as well as its beneficial effects [79].

5.3. Cur-Phospholipid Complex

Cur-phospholipid complex increased aqueous solubility of Cur up to 3-fold and showed greater
protection against tissue damage compared to unformulated Cur [80]. Oral administration of
Cur–phospholipid complex (100 mg/kg) in rats showed a maximum plasma Cur levels of 600 ng/mL
after 2.33 h, whereas administration of the same amount (100 mg/kg) of unformulated Cur, (i.e., the
free Cur) was ~267 ng/mL after 1.62 h, indicating that the Cur-phospholipid complex has greater
bioavailability than unformulated Cur. Importantly, this formula provides more tissue protection
by increasing antioxidant enzyme systems. Similarly, a formula of phosphatidylcholine with Cur,
when administered orally (340 mg/kg) in rat, showed an increase in Cur-bioavailability by 5-folds in
comparison to unformulated Cur [80].

5.4. Liposomes

Liposomes are spherical, self-assembling, closed colloidal structures, composed of lipid bilayers,
with both hydrophilic and hydrophobic characteristics (Table 5). Therefore, they provide an excellent
system for delivering hydrophobic compounds, such as Cur. Liposome vesicles are typically 25 nm
to 2.5 mm in diameter and can be extracted from natural phospholipids or can be artificially
synthesized. Cur can be encapsulated with liposomes, which can be delivered into the cell by
membrane fusion or endocytosis, a formulation which has proved to be safe and to enhance Cur
solubility and cellular activities. Moreover, liposome-encapsulated Cur is transported without rapid
degradation, along with minimum side-effects, and with greater stability. In addition, liposomal-Cur
is more stable than free Cur in PBS, but both are equally stable in human plasma and in culture
media. Furthermore, the liposome-Cur complex increases the bioavailability and efficacy of Cur after
intravenous administration in animals. This formula also possesses anti-cancer effects, both in vitro
and in vivo, against osteosarcoma and breast cancer, and inhibits the growth of melanoma cells. It also
increases serum creatinine, while decreasing tissue damage, cell death, and inflammation [11].

Table 5. Nanoparticles-conjugated Cur formulae, characteristics and their biological effects [11].

Nanoparticles Schematic
Diagram Shape Size (nm) Methods Outcome

Liposome
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Table 5. Cont.
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5.5. Micelles

Unlike liposomes, micelles are monolayered phospholipid complexes (in solution) with various
shapes (spherical, vesicles, rod-like, or star-shaped) and sizes. They are amphipathic molecules,
form emulsions when and solubilized in water, and act as excellent surfactants. A major advantage of
using micelles for Cur delivery is that they are of smaller sizes (~10–100 nm in diameter), making them
more stable in biological fluids [81]. Micelles can form a nano-sized core/shell structures in aqueous
media, facilitate the permeability of hydrophobic drugs, such as Cur, by burring themselves inside the
hydrophobic core and making the polymer more water soluble. Thus, micelles can act as transporters of
Cur, and increase their efficiency by targeting specific organs, such as the brain. Using a solid dispersion
method, Liu and colleagues [72] prepared bio-degradable, self-assembled polymeric micelles,
loaded with Cur, which significantly increased the release of free Cur. In vitro results of studies using
spherical Cur-loaded mixed micelles revealed an enhanced solubility and biological activity of Cur [82].
Similarly, ε-poly-lysine micelles coated with curcuminoid also improved their solubility and cellular
anti-oxidative activities, in comparison to free curcuminoid [83]. Furthermore, novel biodegradable
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micelles that were synthesized by conjugating methoxy-polyethylene glycol provided sustained
Cur release for 24 h in vitro and enhanced its aqueous solubility and stability with a 3-fold
reduction in IC50 value of Cur [84]. To increase prolongation of its half-life, higher bio-distribution,
and bioavailability, while decreasing total clearance of Cur, Song and colleagues [85] synthesized a poly
(D, L-lactide-co-glycolide)-b-poly(ethyleneglycol)-b-poly(D, L-lactide-coglycolide) (PLGA-PEG-PLGA)
polymeric micelles which coated Cur. This prolonged its circulation time because of its smaller size
and hydrophilic shell that reduced the drug uptake by the mononuclear phagocytic systems [85].
In an attempt to increase the aqueous solubility of hydrophobic drugs, a polymeric micellar
formulation containing methoxy poly (ethylene glycol)-block-polycaprolactone diblock copolymers
(MePEG-b-PCL) provided a 13 to 105 fold increase in solubility [11]. However, Cur-loaded micelles
can boost the efficiency of the drugs by targeting specific cells, resulting in less drug accumulation
in healthy tissues and a reduction in toxicity. Therefore, micelle encapsulation of Cur provides an
enormous increase in solubility and bioavailability of Cur, making this formulation a very promising
avenue for developing clinically effective therapeutic tools.

5.6. Noisome

Chemically, noisomes are alkyl or dialkyl polyglycerols that contain cholesterol, which acts as
nonionic surfactant [86]. It is an excellent carrier for all kinds of drug molecules, including those
which are hydrophilic, amphiphilic, or lipophilic in nature. Noisomes behave similar to liposomes
in vivo, therefore, providing an alternative for liposome-based drug delivery. In addition, they have
significant potential for anti-cancer and anti-inflammatory activity [81]. Because, they are very stable,
which prolongs their delivery and suppresses the level of degradation, their use can improve oral
bioavailability of Cur and can increase its skin penetration [87]. Therefore, noisomes are a potential
delivery system for Cur that would increase its stability and bioavailability.

5.7. Nanogels

These are covalently cross-linked polymers with 3-D chain networks making them suitable for
delivering bio-compatible drugs to different tissues (Table 5). They provide the perfect reservoir
for loading and delivering different amphipathic drugs and prevent them from environmental
degradation [88]. The size of nanogels can be customized by manipulating the functional groups used,
the density or degree of cross-linking, ionic strength, and pH of the solution [88]. Several chemical
interactions, such as salt bonds, hydrogen bonds, or hydrophobic interactions can be used to react
with Cur to enhance its stability in biological fluids, as well as its oral and brain bioavailability [89].
For example, a self-assembled dextrin nanogel was used for Cur delivery, which proved to be a suitable
carrier for controlling the release of Cur. By using dynamic light scattering (DLS), scanning electron
microscope (SEM), and Fourier transform infrared spectroscopy (FTIR), it was shown that Cur-chitin
nanogels had higher levels of Cur release at an acidic pH compared to neutral pH, and proved to be a
potent toxic agent to cancer cells (0.1–1.0 mg/mL), without harming normal cells [90]. Furthermore,
water-dispersible hybrid nanogels have been made by coating silver or gold bimetallic nanoparticles
for intracellular delivery of Cur. This formula increases the Cur loading yields and its sustained release,
along with its bioavailability, and also prevents Cur from surrounding temperature or exogenous
irradiation with near-infrared light [91]. Therefore, nanogels might be an excellent carrier for Cur,
due to their smaller particle size (10–200 nm), which significantly enhances their biodegradability,
stability, loading efficiency, and/or biocompatibility, while prolonging half-life, increasing transdermal
penetration and providing protection against degradation by the immune system [88]. Overall, the use
of specifically designed, multifunctional hybrid nanogels appears to be safe and appropriate for Cur
delivery in clinical trials aimed at the prevention of neurodegeneration or cancers.
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5.8. Chitosan

This is a linear polysaccharide of deacetylated and acetylated units of chitin, present in exoskeleton
of crustaceans and the walls of the fungi cells. They contain primary amine groups, which make it
cationic in nature and increase its solubility in various media, while possessing its polyelectrolyte
behavior, metal chelation, and structural uniqueness [92]. Chitosan-coated nanocarriers, contain Cur
particles, and are positive in nature, are 114–125 nm in diameter, and can increase the fluorescence
intensity of Cur. Cur-phytosome-loaded chitosan microspheres also improve Cur absorption, prolong
the retention of Cur and increase its bioavailability due to the accumulation of nanoparticles in the
ER [93]. Furthermore, binding of Cur to chitosan nanoparticles improves its chemical stability and
prevents its degradation. Overall, Cur-coated chitosan derivatives can easily enter the cell membrane
and release Cur in a controlled manner, and are nontoxic to normal cells, while toxic to tumor cells,
at the same time maintaining stronger antioxidant and chelating effects than free Cur [94].

5.9. Gold Particles

Due to their optical and electrochemical uniqueness, stability in biological systems, capability
for combining with biomolecules, and their lower cytotoxicity, gold nanoparticles (AuNPs) can be
a potent carrier for Cur [95]. These particles can also be easily synthesized and functionalized and
have improved longevity in the circulatory system. A formulation of chitosan-Cur nano-capsules with
AuNPs formulated by a solvent evaporation method produced 18–20 nm diameter of AuNPs-Cur,
which provides a more controlled and steady release of Cur, compared with Cur-encapsulated chitosan
nanoparticles. The effect of Cur-conjugated-AuNPs on peripheral blood lymphocytes are those
typical characteristics of apoptosis, including chromatin condensation, membrane blebbing, and the
occurrence of apoptotic bodies [96]. Therefore, Cur conjugated AuNPs could provide better targeting
of cells, sustained release of Cur, and more powerful antioxidant effects than free Cur.

5.10. Silver Particles

As a safe and potent anti-microbial agent, silver (Ag) can be used to improve Cur delivery [97].
Using a diffusion mechanism, researchers loaded Cur into a 15-nm diameter sodium carboxyl
methyl cellulose silver nanocomposite (AgNPs) film. This film improved Cur encapsulation and
increased its anti-microbial activity. Similarly, a novel hydrogel-AgNPs-Cur composite has been
developed which produces greater anti-microbial activity than AgNPs-Cur films that lack the hydrogel.
Moreover, there is a sustained release of Cur from the Ag-encapsulated composite, which can increase
its bioavailability, as well as therapeutic values [11]. In addition, the use of AgNPs could protect the
cells from anti-microbial attack and also act as an anti-inflammatory, anti-viral, and anti-cancer agent,
along with its wound-healing properties [11] (Table 5).

5.11. Cyclodextrin

Cyclodextrins (Cds) are the cyclic oligomers of glucose or oligosaccharide residues synthesized
from starch molecules, which have wide applications, including use in pharmaceutical, drug-delivery,
and food processing industries [81]. Chemically, they are pseudo-amphiphilic molecules, which help
their solubility and stability in aqueous solution and can act as vehicles for oral or intravenous delivery
of hydrophobic molecules (e.g., Cur) to improve their bioavailability and prevent their degradation
without alteration of their pharmacokinetics [81]. A preparation with Cds-Cur complexes (Figure 8)
improved the hydrolytic stability of Cur with enhancement of photodecomposition efficiency in
organic solvents, thus increasing their stability and reducing their degradation rate compared to the
free Cur [98].



Int. J. Mol. Sci. 2018, 19, 1637 14 of 42

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  13 of 42 

 

which provides a more controlled and steady release of Cur, compared with Cur-encapsulated 
chitosan nanoparticles. The effect of Cur-conjugated-AuNPs on peripheral blood lymphocytes are 
those typical characteristics of apoptosis, including chromatin condensation, membrane blebbing, 
and the occurrence of apoptotic bodies [96]. Therefore, Cur conjugated AuNPs could provide better 
targeting of cells, sustained release of Cur, and more powerful antioxidant effects than free Cur. 

5.10. Silver Particles 

As a safe and potent anti-microbial agent, silver (Ag) can be used to improve Cur delivery [97]. 
Using a diffusion mechanism, researchers loaded Cur into a 15-nm diameter sodium carboxyl methyl 
cellulose silver nanocomposite (AgNPs) film. This film improved Cur encapsulation and increased 
its anti-microbial activity. Similarly, a novel hydrogel-AgNPs-Cur composite has been developed 
which produces greater anti-microbial activity than AgNPs-Cur films that lack the hydrogel. 
Moreover, there is a sustained release of Cur from the Ag-encapsulated composite, which can 
increase its bioavailability, as well as therapeutic values [11]. In addition, the use of AgNPs could 
protect the cells from anti-microbial attack and also act as an anti-inflammatory, anti-viral, and anti-
cancer agent, along with its wound-healing properties [11] (Table 5). 

5.11. Cyclodextrin 

Cyclodextrins (Cds) are the cyclic oligomers of glucose or oligosaccharide residues synthesized 
from starch molecules, which have wide applications, including use in pharmaceutical, drug-
delivery, and food processing industries [81]. Chemically, they are pseudo-amphiphilic molecules, 
which help their solubility and stability in aqueous solution and can act as vehicles for oral or 
intravenous delivery of hydrophobic molecules (e.g., Cur) to improve their bioavailability and 
prevent their degradation without alteration of their pharmacokinetics [81]. A preparation with Cds-
Cur complexes (Figure 8) improved the hydrolytic stability of Cur with enhancement of 
photodecomposition efficiency in organic solvents, thus increasing their stability and reducing their 
degradation rate compared to the free Cur [98]. 

 
Figure 8. Cyclodextrin-Cur complex. Cyclodextrin is a water-soluble pseudo-amphiphilic starch 
molecule, which is a potent carrier for Cur and can increase its solubility and bioavailability. 

Similarly, Cur tagged with β-Cds nanosponges has more solubilization efficiency and can 
release Cur more readily, given that the complex is nonhemolytic in comparison to free Cur [99]. 
Another study showed that the Cds-Cur complex becomes more potent as an anti-inflammatory 
agent than free Cur by inhibiting the nuclear factor kappa beta (NF-κB), inducing death of cancer 
cells [100], such as prostate cancer cells, while acting as a telomerase inhibitor. Therefore, Cds could 
encapsulate Cur and increase its stability and bioavailability, compared to the free Cur, without 
altering their pharmacokinetics. 

Figure 8. Cyclodextrin-Cur complex. Cyclodextrin is a water-soluble pseudo-amphiphilic starch
molecule, which is a potent carrier for Cur and can increase its solubility and bioavailability.

Similarly, Cur tagged with β-Cds nanosponges has more solubilization efficiency and can release
Cur more readily, given that the complex is nonhemolytic in comparison to free Cur [99]. Another study
showed that the Cds-Cur complex becomes more potent as an anti-inflammatory agent than free Cur by
inhibiting the nuclear factor kappa beta (NF-κB), inducing death of cancer cells [100], such as prostate
cancer cells, while acting as a telomerase inhibitor. Therefore, Cds could encapsulate Cur and increase
its stability and bioavailability, compared to the free Cur, without altering their pharmacokinetics.

5.12. Dendrimer

Dendrimers are a group of small (nM), dense spherical, branched series of polymeric globular
polymers (Figure 9), which are considered as synthetic proteins. They consist of a core, branched
interiors and numerous surface functional groups (i.e., OH or NH2), which serve as a platform for
carrying and delivering many drugs, (like Cur), small molecules, or DNA [101]. As a safe molecule,
dendrimers can be used as a probe for molecular imaging. Dendrimer-Cur formulations are readily
dissolved in aqueous solution, can increase cellular uptake, and show more cytotoxic effects in human
breast cancer cells than free Cur. The dendrimer surface containing poly-amidoamine group can
carry hydrophobic drugs (such as Cur) for their successful delivery. For example, a poly-amidoamine
(PAMAM) encapsulated Cur conjugates show significant inhibition of telomerase activity and induce
apoptosis by enhancing Cur uptake in human cancer cell lines [102].
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Furthermore, when Cur is conjugated with dendrosomal nanoparticles, which are neutral,
amphipathic, and biodegradable nanomaterials, this compound increases the stability and, uptake of
Cur, while increasing its antitumor activity through its induction of apoptosis, as demonstrated
in both in vitro and in vivo experiments [103]. In addition, the dendrosomal nanoparticle-Cur has
chemo-protective and chemotherapeutic effects on colon cancer by inhibiting the cell proliferation and
induction of apoptosis [103]. These properties make dendrimers especially attractive as a carrier for
Cur, relative to other nanoparticles.

5.13. Solid Lipid Nanoparticles (SLNP)

SLNPs are the spherical and submicron colloidal lipid carriers (50 to 1000 nm) which maintain
a solid shape at room temperature (Figure 10). There are several advantages for using of SLNPs for
Cur delivery, including improvement of release kinetics, enhancement of bioavailability, increased
protection via encapsulation, ease of manufacturing, increased stability, along with versatile
applications [104]. Moreover, the size of the Cur-SLNPs is much smaller, ranging from 100 to
300 nm, with a very favorable total drug content of <92% when manufactured by micro-emulsification
technique. One of our recent experiments with SLNPs-Cur, using a dose of 555 ppm, showed that Cur
level was 250–300 nM in mouse brain tissue, along with improved neurobehavioral outcomes [12,40].Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  15 of 42 
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Figure 10. Schematic diagram showing formulation of solid lipid Cur particle (SLCP). (A) In this
formula, outer layer is composed of long chain fatty acid bilayers, with the inner layer being composed
of a solid fatty acid core and on that core that is coated with Cur molecules. (B) Comparative solubility
(upper) and cellular permeability in primary hippocampal neurons (lower) and (C) permeability of
Cur and SLCP in N2a cells. Scale bar = 100 µm

In an experimental set up using an animal model of cerebral ischemia, rats fed with SLNPs-Cur
had a 90% improvement in cognitive function, along with a 52% inhibition of acetyl cholinesterase
activity [105]. Furthermore, this formula has been shown to increase the levels of superoxide dismutase
(SOD), catalase, glutathione (GSH), and the activities of mitochondrial enzymes, while decreasing lipid
peroxidation and peroxynitrite levels. This formula also improved the bioavailability of Cur in the
brain by 16.4- and 30-fold with oral and intravenous administration, respectively. Similarly, solid lipid
microparticles of Cur that were prepared with palmitic acid, stearic acid, and soya lecithin, had more
powerful anti-angiogenic and anti-inflammatory activities. As such, the SLNP-Cur formula has several
advantages over other nanoparticles, such as: (a) larger carrying capacity of Cur; (b) ease of scaling and
sterilization; (c) protection via encapsulation, (d) more favorable kinetics, (e) increased bioavailability,
(f) ease of manufacturing, and (g) superior stability with application versatility [11]. For example,
Verdure Sciences has developed a SLNP-formulation of Cur, called “Longvida”, which achieves a
0.1 to 0.2 µM plasma level with an associated 1–2 µM brain level of free Cur in animals [6,10,13,55].
Later they optimized this formula as “lipidated Cur” which can achieve more than 5 µM in the brains
of mice [106,107]. We have been working with this formula and found significant beneficial effects
both in vivo and in vitro models of AD [108], and in an in vitro model of glioblastoma [14].
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5.14. Derivatives and Analogues of Cur

The biological properties of Cur and its derivatives depend on the chemical structure of
Cur. For example, isomeric forms of Cur have better antioxidant properties. Therefore, structural
modifications of Cur might be a good strategy to improve its biological activities. Several Cur
derivatives and/or analogues have been synthesized and tested by many researchers. Among them,
EF-24, a Cur analogue (Figure 11) has shown to possess promising anti-tumor activity in vitro and
in vivo, in comparison to natural Cur [109]. Up to 32 mg/kg of this compound was safe in mice after
intravenous administration, and the absorption was rapid after both oral and i.p. administration.
At this dose, when mice were injected with EF-24 i.p., within 3 min, the peak plasma concentration
of Cur reached 1000 nM and the absorption and elimination half-life values were 177 and 219 min,
respectively. The bioavailability of oral and i.p. EF-24 was 60% and 35%, respectively [109].Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  16 of 42 
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These new analogues exhibit no in vivo toxicity and have shown growth suppressive activity
that is ~30 times greater than that of natural Cur [110]. Furthermore, synthesized Cur analogues,
when complexed with other chemicals, such as sodium dodecyl sulfate and cetyl-trimethyl-ammonium
bromide micelles, show anti-oxidative effects against free-radical-induced lipid peroxidation [111],
suggesting that synthesized Cur can be used as an antioxidant, as is the case with natural Cur.

6. Rationale for Cur Therapy in Neurodegenerative Diseases

Several experiments have demonstrated that Cur has pleiotropic effects on the nervous
system. It is a neuroprotective agent, with potent antioxidant properties, along with the significant
anti-inflammatory activity [26,33]. Therefore, its anti-amyloid properties make it a most promising
compound for treating different brain diseases caused by amyloid accumulation. In addition, Cur is
hydrophobic, as well as lipophilic in nature, and because the brain contains huge amounts of
lipids, the absorption, bioavailability, and half-life profiles of Cur are very favorable in the CNS.
Several experiments have shown that neuroinflammation, oxidative damage, and deposition of
misfolded amyloid proteins synergistically contribute to the pathogenesis of many neurological
diseases. Therefore, targeting these processes is a prime strategy for developing therapies for different
neurodegenerative diseases. In this context, use of Cur as a treatment for neurodegenerative diseases,
has several advantages (Figure 12), including it can: (i) readily cross the blood brain barrier [13,32];
(ii) bind and dis-aggregate amyloid oligomers and fibrils (anti-amyloid) [9,112]; (iii) enhance amyloid
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clearance similar to vaccine [113]; (iv) reduce chronic inflammation in neurodegenerative diseases;
(v) act as a potent antioxidant; (vi) stimulate neurogenesis, as shown in animal models; (vii) chelate
metals, including removal of the metals from Aβ; (viii) be taken at relatively high doses (12 g/day)
with no negative effects; (ix) be obtained readily and inexpensively; (x) be absorbed into hydrophobic
and lipophilic nature, and (xi) produce high fluorescent intensity when it binds to amyloid-plaques,
for use in labeling and imaging of amyloid plaques ex vivo and in vivo, or as an imaging probe for
non-invasive techniques [13,114] (Figure 12).Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  17 of 42 
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Figure 12. Multiple-reasons for use Cur for treating neurodegenerative diseases. Among these,
its anti-amyloid property is particularly attractive as a therapeutic tool.

6.1. Curcumin Therapy in Alzheimer’s Disease

Alzheimer’s disease is the major age-related neurodegenerative disease, characterized by various
neurobehavioral abnormalities, but most prominently by early memory deficits, with a gradual decline
of cognitive and intellectual functions that culminate in dementia. It is the leading cause of death
in the elderly [115]. The hallmark pathologies of AD are the deposition of Aβ protein as senile
plaques in extracellular spaces [116–120] and the phosphorylated tau as neurofibrillary tangles (NFT),
intracellularly [121–125]. The accumulation of these abnormal or misfolded proteins are thought to
be the principal reasons for the synaptic deficits, neuronal loss, oxidative damage and increase in
neuroinflammation in numerous brain regions. Therefore, drugs with pleotropic actions, especially
those with anti-amyloid properties and those that reduce oxidative damage, and neuroinflammation
should provide the greatest potential for preventing the neuronal loss observed in AD. Unfortunately,
numerous drugs or small molecules that have been developed and tested to halt neurodegeneration
have not prevented or reduced the symptoms of this disease. Recently, Cur is being considered one of
the most potent and promising natural polyphenols for use in AD therapy, due to its pleotropic actions
(See Table 6).
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Table 6. Pleotropic actions of Cur for AD therapy. Among them, anti-amyloid, anti-oxidant and
anti-inflammatory activities are considered the most promising for treating AD [33,126].

Actions Mechanisms References

Anti-amyloid properties Binds with Aβ and prevent its oligomerization and fibril
formation [9,112,127]

Inhibition of Aβ production Inhibits activities of β-secretase (BACE), inhibiting
amyloid precursor protein (APP) processing pathway [33,128]

Aβ clearance Stimulates phagocytosis, thus decrease Aβ-plaques [9,10,51]

Inhibition of NFTs Binds with NFTs and inhibits tau phosphorylation (pTau) [129]

Inhibition of other amyloids Binds with α-synuclein in PD, huntingtin in HD, and
prion aggregates in prion diseases [35,130]

Potent antioxidant Scavenges ROS/RONS, increase antioxidant levels,
decreases lipid peroxidation, chelates toxic metals [10,51,131]

Anti-inflammatory activities Downregulates NF-κB, COX-2, 5-LOX, TNFα, IL-1, IL-6. [10,51]

Regulates activity of
molecular chaperones

Restores levels of heat shock proteins (HSP90, 70, 60, 40,
HSC70), proteasome system [132]

Enhance NGF, BDNF, GDNF,
neurogenesis and
synaptogenesis

Increase expression of BDNF, NGF, GDNF and can
promote neurogenesis, and synaptogenesis [10,133]

Improving cerebral circulation
Inhibits inflammation of brain vasculature leading to
improvement of overall blood supply, reduces platelet
adhesion in the brain microvascular endothelial cells

[69,134]

Table 7. Curcumin therapy in different animal models and their outcomes [135].

Animal Models Dose and Duration
of Treatment Disease Outcomes Ref.

Sprague-Dawley rat Diet, 500 and 2000 ppm,
2 months AD (Aβ ICV infusion) Decrease spatial memory deficit,

oxidative damage, microgliosis [135]

3XTg-AD mice Diet, 555 ppm, 2 months AD (Aβ overexpression) Decreased Aβ plaque deposition [12]

APPswe/PS1dE9 mice Diet, 160 and 5000 ppm,
6 months AD (Aβ overexpression) Reduced hippocampal

Aβ40/Aβ42 levels [136]

APPswe/PS1dE9 mice AD (Aβ overexpression) Improved spatial memory and
decreased Aβ40/Aβ42 levels [114]

Tg2576 mice Diet, 500 ppm, 4 m AD (Aβ overexpression) Decrease cell death, Aβ-plaques,
prevent fibril formation [9]

PS-1dE9 mice IV, 7.5 mg/kg/day, 7 days AD (Aβ overexpression) Increased restoration of distorted
neuritis, plaque disruption [135]

Kunming mice PO, 200 mg/kg, 45 days AD (AlCl3, D-galactose) Decrease spatial memory deficit [135]

Sprague-Dawley rat PO, 50 mg/kg, 4 days PD (6-OHDA) Improve TH+ cell numbers [135]

ICR mice IP, 50 mg/kg, 3 times PD (MPTP) Decreased oxidative damage, increase
dopaminergic neurons [137]

Swiss albino mice IP, 80 mg/kg, 7 days PD (MPTP) Decreased MAO-B [135,138]

CAG140 mice Diet, 555 ppm, 2m HD (knock in) Decreased huntingtin aggregation,
increase rearing, decrease climbing [40]

5XFAD IP, 100 mg/kg, 2–5 days AD (transgenic) Decreased Aβ plaque, prevent
cell death [108]

6.1.1. Inhibition of Aβ Aggregation

Numerous experiments have demonstrated that Cur can directly bind to the β-pleated sheet
structures of Aβ. Interestingly, Cur shows the strongest inhibitory effects on Aβ aggregation among
214 antioxidant compounds tested in vitro [125,135,139,140], indicating it is one of the most potent
anti-amyloid compounds investigated so-far. An in vitro study conducted by Ono and colleagues
has demonstrated that Cur has a dose-dependent effects on the inhibition of Aβ1−40/1−42 fibrils,

albertcochet
Texte surligné 



Int. J. Mol. Sci. 2018, 19, 1637 19 of 42

with an EC50 of 0.09–0.63 µM [9,112]. Several in vitro studies have demonstrated that Cur can attenuate
the assembly of both Aβ40 and Aβ42 oligomers and fibril formation [7] (Figure 13).
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performed by probing with Aβ42-fibril specific antibody (OC) and the color was developed with 
chemiluminescent reagents and the optical density of each dot was measured using Image-J software. 
Lower concentrations (1–0.001 µM) of Cur inhibited Aβ42 aggregation, whereas higher 
concentrations had no effect on aggregation. 

Figure 13. Nanomolar (nM) concentrations of Cur inhibit Aβ42 aggregation in vitro. HFIP-treated
Aβ42 was incubated with and without different concentrations of Cur for 24–72 h and a dot blot was
performed by probing with Aβ42-fibril specific antibody (OC) and the color was developed with
chemiluminescent reagents and the optical density of each dot was measured using Image-J software.
Lower concentrations (1–0.001 µM) of Cur inhibited Aβ42 aggregation, whereas higher concentrations
had no effect on aggregation.

Following oral or intraperitoneal injections of Cur for 3–7 days in mice, Cur crossed the
blood-brain barrier (BBB) and was found in brain tissue, decreasing neuropathology in an animal
model of AD (Table 7), as shown by two-photon microscopic imaging [141]. Similarly, significant
inhibition of Aβ oligomerization, its plaque formation, and tau phosphorylation, along with behavioral
improvements, were observed in a mouse model of AD after oral administration of Cur [9,33,51].
Furthermore, in vivo imaging, using multiphoton microscope, showed a decrease of 30% Aβ plaque
size and prevented dystrophic neurites when the animals were injected the Cur via tail vein for one
week [141]. In another study, Cur was shown to bind with Aβ-plaques in retina [6,25,139]. In a clinical
study, Cur engulfed Aβ effectively and decreased plaque load in AD brain [9]. Though there are
no true epidemiological studies that relate Cur intake to the incidence of AD, a trend for reduced
incidences of AD is observed among Indian and South Asian countries, in which Cur is consumed
everyday as a spice, when compared to the United States and other Western countries in which the
intake of Cur is much less [33].

6.1.2. Inhibition of Aβ Production

Aβ is a by-product of a transmembrane protein, called amyloid precursor protein (APP).
The production of Aβ is catalyzed by the two successive enzymes, first by β-secretase (BACE),
followed by γ-secretase, which contains presenilin-1 (PS-1). It is speculated that during disease
progression, induction of inflammatory signals aggravate the expression of Aβ production by
increasing the activity of BACE [142], whereas Cur inhibits the activity of BACE, thus reducing the
levels of Aβ [9,33]. In addition, Cur is a potent inhibitor of the APP metabolic pathway, thus lowering
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Aβ levels [7,143]. Furthermore, it can regulate Aβ production by inhibiting GSK-3β-mediated PS-1
activation [144] (Figure 14).

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  19 of 42 

 

Following oral or intraperitoneal injections of Cur for 3–7 days in mice, Cur crossed the blood-
brain barrier (BBB) and was found in brain tissue, decreasing neuropathology in an animal model of 
AD (Table 7), as shown by two-photon microscopic imaging [141]. Similarly, significant inhibition of 
Aβ oligomerization, its plaque formation, and tau phosphorylation, along with behavioral 
improvements, were observed in a mouse model of AD after oral administration of Cur [9,33,51]. 
Furthermore, in vivo imaging, using multiphoton microscope, showed a decrease of 30% Aβ plaque 
size and prevented dystrophic neurites when the animals were injected the Cur via tail vein for one 
week [141]. In another study, Cur was shown to bind with Aβ-plaques in retina [6,25,139]. In a clinical 
study, Cur engulfed Aβ effectively and decreased plaque load in AD brain [9]. Though there are no 
true epidemiological studies that relate Cur intake to the incidence of AD, a trend for reduced 
incidences of AD is observed among Indian and South Asian countries, in which Cur is consumed 
everyday as a spice, when compared to the United States and other Western countries in which the 
intake of Cur is much less [33]. 

6.1.2. Inhibition of Aβ Production 

Aβ is a by-product of a transmembrane protein, called amyloid precursor protein (APP). The 
production of Aβ is catalyzed by the two successive enzymes, first by β-secretase (BACE), followed 
by γ-secretase, which contains presenilin-1 (PS-1). It is speculated that during disease progression, 
induction of inflammatory signals aggravate the expression of Aβ production by increasing the 
activity of BACE [142], whereas Cur inhibits the activity of BACE, thus reducing the levels of Aβ 
[9,33]. In addition, Cur is a potent inhibitor of the APP metabolic pathway, thus lowering Aβ levels 
[7,143]. Furthermore, it can regulate Aβ production by inhibiting GSK-3β-mediated PS-1 activation 
[144] (Figure 14). 

 
Figure 14. Schematic diagram showing the formation of different Aβ-species during its aggregation 
process and the inhibitory role of Cur in its assembly process. Cur has been shown to bind with Aβ 
and attenuate the oligomer formation or slowdown the process. Additionally, it can fasten the 
transformation of more toxic oligomers into less fibril forms. 

6.1.3. Aβ Clearance 

The levels of Aβ in the brains of AD patients depend on a balance between production, clearance, 
and influx of Aβ. When clearance pathways are impaired the levels of Aβ are increased. However, 
there are several ways in which Aβ is disposed from the cell, including receptor-mediated Aβ 
transport across the BBB and enzyme-mediated Aβ degradation, as well as the involvement of 
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with Aβ to enable its removal from the brain by promoting receptor-mediated Aβ efflux [9]. In 
contrast, Cur could decrease Aβ load by suppressing the Aβ influx across the BBB and by 

Figure 14. Schematic diagram showing the formation of different Aβ-species during its aggregation
process and the inhibitory role of Cur in its assembly process. Cur has been shown to bind with
Aβ and attenuate the oligomer formation or slowdown the process. Additionally, it can fasten the
transformation of more toxic oligomers into less fibril forms.

6.1.3. Aβ Clearance

The levels of Aβ in the brains of AD patients depend on a balance between production, clearance,
and influx of Aβ. When clearance pathways are impaired the levels of Aβ are increased. However,
there are several ways in which Aβ is disposed from the cell, including receptor-mediated Aβ

transport across the BBB and enzyme-mediated Aβ degradation, as well as the involvement of immune
system [145]. Cur can act in a manner that is similar to an amyloid vaccine [33] and can bind with
Aβ to enable its removal from the brain by promoting receptor-mediated Aβ efflux [9]. In contrast,
Cur could decrease Aβ load by suppressing the Aβ influx across the BBB and by upregulating the
enzyme-mediated degradation of Aβ. Furthermore, Cur can stimulate phagocytosis and increase the
association of phagocytic cells around Aβ-plaques as observed in a rat AD model [146] and the Tg2576
mouse model of AD, as well as with plaques in post-mortem human brain sections exposed to primary
rodent microglia [147] (Figure 15).
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Aβ-influx from the blood stream to the brain and increase Aβ-efflux from brain to the general circulation.
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6.1.4. Inhibition of Tau Phosphorylation

The second most common pathology observed in AD is the tau tangle, which is basically the
deposition of phosphorylated tau (pTau) as paired helical filaments (PHF). Tau is a microtubule
stabilizing protein, which is abundant in neurons of whole CNS. Hyperphosphorylation of
tau causes cytoarchitectural changes, which create oxidative stress, mitochondrial dysfunction,
and neurodegeneration [148]. Tau phosphorylation and deposition of NFTs are regulated by several
tau kinases, with glycogen synthase kinase-3β (GSK-3β) and mitogen-activated protein kinase (MAPK)
being the most common among them [149]. The common tau-kinases, which can phosphorylate the
tau protein are cyclin-dependent kinase 5 (Cdk5)/p25, extracellular signal-regulated kinase 2 (ERK2),
S6 kinase (S6K), microtubule affinity-regulating kinase (MARK), SAD kinase (SADK), protein kinase A
(PKA), calcium/calmodulin-dependent protein kinase II (CaMKII), or Src family kinases, such as Fyn
and c-Abl.

Therefore, inhibition of tau kinases could be a viable strategy to prevent NFT-induced
neurodegeneration. Cur has been shown to bind to NFTs in human AD brain and mouse models of
AD [129] (Figure 16). An in vitro experiment showed that Cur inhibits pTau aggregation by reducing
oxidative stress [150]. We have shown that Cur inhibits GSK-3β activity and reduces tau dimer and
pTau oligomerization in a human tau transgenic mouse model [12]. In addition, oral administration of
Cur (555 ppm) together with DHA, reduced pTau by inhibiting IRS-1 and JNK activities in vivo [12]
(Figure 16).

6.1.5. Inhibition of Oxidation and Inflammation

Whether or not Aβ can induce oxidative stress and neuroinflammation is not yet clear, but it is
considered one of the primary events involved in neuronal death in AD [151]. However, as a strong
antioxidant, Cur can limit the pro-oxidant, pro-inflammatory, and other toxic effects in AD brains [7,33].
Cur can inhibit the inflammatory cytokines, including IL1, IL6, TNF-α, IFN-γ, and COX-2 activity [152].
Several studies have demonstrated that Cur can inhibit activated astrocytes and microglia, as shown
by reducing GFAP and Iba-1 levels [108,153] (Figure 17). Therefore, as an anti-inflammatory natural
polyphenol, Cur is a promising compound for tackling oxidative stress and inflammation in AD.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  21 of 42 
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lower) activation in 5xFAD mice brain tissue. 

6.1.6. As an Imaging Probe for Aβ-Plaque Detection Ex Vivo and In Vivo 

Cur is an ideal fluorophore for Aβ plaque imaging and detection because it is a natural 
fluorescent molecule and preferentially binds to Aβ plaques [6,9,13,25,141]. Therefore, researchers 
use Cur for labeling and imaging Aβ-plaques ex vivo and in vivo [13]. Interestingly, it has structural 
similarities with classical amyloid binding dyes, (such as Thioflavin-S, Congo red, and crysamine-G), 
which makes it a promising candidate for labeling and imaging of Aβ plaques ex vitro and in vivo 
[13] (Figure 18). For example, Garcia-Alloza and colleagues have demonstrated that Cur can be used 
to visualize Aβ-plaques in vivo, as shown in APP-tau transgenic mouse model [141]. Similarly, a 
strong fluorescent signal was observed when the brain sections both from animal models of AD and 
from AD patients were incubated with Cur [6,154]. To confirm whether Cur binds to Aβ-plaques, we 
performed immunohistochemistry in the 5XFAD brain tissue sections with Aβ-specific antibodies 
(6E10) and then the same sections were stained with Cur, and we observed that Cur was completely 
co-localized with Aβ-specific antibody (Figure 18), which indicates that Cur has specificity to Aβ 
similar to Aβ-specific antibody [13]. 

Figure 16. Schematic diagram showing the role of Cur in inhibition of tau phosphorylation in AD.
Cur has been shown to inhibit tau-kinases, thus inhibiting phospho-tau formation. It also binds with
tau directly to inhibit their aggregation.
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Figure 17. Schematic diagram showing the anti-inflammatory properties of Cur in Alzheimer’s disease.
(A) Cur stimulates B-lymphocytes to produce antibodies, increase anti-inflammatory cytokines and
decrease proinflammatory chemokines, increase phagocytosis of Aβ, and increase proteolytic enzymes
to degrade Aβ. (B) Cur inhibits microglia (Iba-1; upper) and astrocyte (GFAP; lower) activation in
5xFAD mice brain tissue.

6.1.6. As an Imaging Probe for Aβ-Plaque Detection Ex Vivo and In Vivo

Cur is an ideal fluorophore for Aβ plaque imaging and detection because it is a natural fluorescent
molecule and preferentially binds to Aβ plaques [6,9,13,25,141]. Therefore, researchers use Cur for
labeling and imaging Aβ-plaques ex vivo and in vivo [13]. Interestingly, it has structural similarities
with classical amyloid binding dyes, (such as Thioflavin-S, Congo red, and crysamine-G), which makes
it a promising candidate for labeling and imaging of Aβ plaques ex vitro and in vivo [13] (Figure 18).
For example, Garcia-Alloza and colleagues have demonstrated that Cur can be used to visualize
Aβ-plaques in vivo, as shown in APP-tau transgenic mouse model [141]. Similarly, a strong fluorescent
signal was observed when the brain sections both from animal models of AD and from AD patients
were incubated with Cur [6,154]. To confirm whether Cur binds to Aβ-plaques, we performed
immunohistochemistry in the 5XFAD brain tissue sections with Aβ-specific antibodies (6E10) and then
the same sections were stained with Cur, and we observed that Cur was completely co-localized with
Aβ-specific antibody (Figure 18), which indicates that Cur has specificity to Aβ similar to Aβ-specific
antibody [13].Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  22 of 42 
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is co-localized with Aβ-specific antibody (6E10) in Aβ-plaques in mouse cortical tissue from 5xFAD. 

More recently, researchers have tried to use the fluorescent properties of Cur derivatives for in 
vivo imaging, such as positron emission tomographic (PET) probes for amyloid imaging or retinal 
scan for detection of AD in experimental animals and humans [127]. However, it is not a practical 
probe for in vivo near infrared (NIR) imaging, due to its short emission wavelength (~550 nm), limited 
bioavailability, and rapid degradation. To overcome these issues, scientists modified the Cur 
structure to form boro-fluoro-Cur derivatives, which shift the emission wavelength to the NIR range 
(Figure 19). These derivatives are called CRANAD derivative (e.g., CRANAD-2, CRANAD-44 and 
CRANAD-28) [155] (Figure 19). These derivatives of the Cur probe significantly increase fluorescence 
properties upon binding to Aβ-plaques [155,156]. Surprisingly, the binding affinity of Cur for Aβ 
aggregates is higher (with a Ki of 0.07 nM) for F18-labeled Cur binding of fibrillar Aβ than for other 
the molecular imaging probes, such as PIB in FDG-PET [127]. Beyond labeling Aβ-plaques, Cur can 
also help to visualize the distinct morphology of different Aβ-plaques, such as core, neuritic, diffuse, 
and burned out plaques [13], indicating that it can be used to investigate the overall amyloid plaque 
loads, as well as an aid to characterize the morphology of Aβ-plaques after anti-amyloid therapy. 
Therefore, as a potent anti-amyloid polyphenol, Cur has a complete requisite profile for labeling and 
imaging the amyloid plaques. 

6.2. Curcumin Therapy in Parkinson’s Disease 

Parkinson’s disease (PD) is the second most common age-related neurodegenerative disease, 
and is characterized by bradykinesia, tremor, rigidity, and abnormalities in gait and posture. Gradual 
and selective degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), 
with a subsequent decline in dopamine (DA) levels in the nigro-striatal pathway are associated with 
PD [157,158]. Although most PD cases are sporadic, about 5% of the cases can be inherited. The major 
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Figure 18. Cur binds to Aβ-plaques greater than classical amyloid binding dyes. (A) Curcumin has
structural similarities with classical amyloid binding dyes. (B) Upper panel: Cryostat sections from
5XFAD mouse hippocampus were stained with Thio-S, Congo-red, Cur and Aβ-specific antibody
(6E10). Please note that Cur stained Aβ plaques are more visible than other dyes. Lower panel: Cur is
co-localized with Aβ-specific antibody (6E10) in Aβ-plaques in mouse cortical tissue from 5xFAD.

albertcochet
Texte surligné 



Int. J. Mol. Sci. 2018, 19, 1637 23 of 42

More recently, researchers have tried to use the fluorescent properties of Cur derivatives for
in vivo imaging, such as positron emission tomographic (PET) probes for amyloid imaging or retinal
scan for detection of AD in experimental animals and humans [127]. However, it is not a practical
probe for in vivo near infrared (NIR) imaging, due to its short emission wavelength (~550 nm),
limited bioavailability, and rapid degradation. To overcome these issues, scientists modified the Cur
structure to form boro-fluoro-Cur derivatives, which shift the emission wavelength to the NIR range
(Figure 19). These derivatives are called CRANAD derivative (e.g., CRANAD-2, CRANAD-44 and
CRANAD-28) [155] (Figure 19). These derivatives of the Cur probe significantly increase fluorescence
properties upon binding to Aβ-plaques [155,156]. Surprisingly, the binding affinity of Cur for Aβ

aggregates is higher (with a Ki of 0.07 nM) for F18-labeled Cur binding of fibrillar Aβ than for other
the molecular imaging probes, such as PIB in FDG-PET [127]. Beyond labeling Aβ-plaques, Cur can
also help to visualize the distinct morphology of different Aβ-plaques, such as core, neuritic, diffuse,
and burned out plaques [13], indicating that it can be used to investigate the overall amyloid plaque
loads, as well as an aid to characterize the morphology of Aβ-plaques after anti-amyloid therapy.
Therefore, as a potent anti-amyloid polyphenol, Cur has a complete requisite profile for labeling and
imaging the amyloid plaques.

6.2. Curcumin Therapy in Parkinson’s Disease

Parkinson’s disease (PD) is the second most common age-related neurodegenerative disease, and
is characterized by bradykinesia, tremor, rigidity, and abnormalities in gait and posture. Gradual
and selective degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc),
with a subsequent decline in dopamine (DA) levels in the nigro-striatal pathway are associated with
PD [157,158]. Although most PD cases are sporadic, about 5% of the cases can be inherited. The major
pathological hallmarks of PD are the presence of insoluble, fibrous aggregates, composed of α-syn in
intraneuronal inclusions of Lewy bodies (LBs). In humans, PD is associated with the α-syn aggregation.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  23 of 42 
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factor EB, thus reducing cell death and neurotoxicity [160]. Sixthly, Cur can inhibit activity of 
monoamine oxidase (similar to MAO-inhibitor), thus restoring DA levels [161] and reducing 
depression [162]. Seventhly, Cur can protect DA neurons in brain by reducing ROS levels, 
maintaining mitochondrial functions, and attenuating neuroinflammation via CNB001, a Cur-
derived compound [163] Finally, Cur can inhibit the JNK pathway and prevent dopaminergic 
neuronal loss via apoptosis [163] (Figure 20). 
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Effects of Cur on PD

Cur has several beneficial effects on PD (Figure 20). First, Cur can inhibit α-syn aggregation and,
prevent LB accumulation in vitro, attenuating α-syn oligomer toxicity in cells [35]. First, Cur reduces
toxicity by binding to α-syn oligomers and fibrils (but not monomers), modulating the morphology,
and reducing their aggregation, as shown by fluorescence and two-dimensional nuclear magnetic
resonance (2D-NMR) studies [35]. Secondly, Cur attenuates reduction of DA levels, and degeneration
of DA neurons [39]. Thirdly, Cur can reduce oxidative stress, memory deficits, and motor
impairments [33]. Fourthly, Cur chelates iron, copper, and other metals, thus preventing α-syn
or LB aggregation [159]. Fifthly, Cur promotes the recovery of macroautophagy by activating
transcription factor EB, thus reducing cell death and neurotoxicity [160]. Sixthly, Cur can inhibit
activity of monoamine oxidase (similar to MAO-inhibitor), thus restoring DA levels [161] and
reducing depression [162]. Seventhly, Cur can protect DA neurons in brain by reducing ROS levels,
maintaining mitochondrial functions, and attenuating neuroinflammation via CNB001, a Cur-derived
compound [163] Finally, Cur can inhibit the JNK pathway and prevent dopaminergic neuronal loss via
apoptosis [163] (Figure 20).
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6.3. Curcumin in Huntington’s Disease

Huntington’s disease (HD), is a poly-glutamine (PolyQ) autosomal dominant genetic disorder
characterize by progressive neurodegeneration and impairments of motor, psychiatric and cognitive
functions [164]. Degeneration of medium spiny neurons of striatum, and cells in layers V and VI
of cortex, SNpc, hippocampus, cerebellum, hypothalamus, and parts of the thalamus are the most
commonly observed in HD [165,166]. The hallmark pathology in HD is the abnormal accumulation
of misfolded mutated huntingtin protein (mHTT) as intracellular aggregates, which causes selective
neuronal loss, primarily in the cortex and medium spiny neurons of striatum [165]. The Huntingtin
gene (HTT) is present on the short arm of chromosome 4p16.3. HTT is ubiquitously expressed in
neurons and is found in many subcellular compartments. Although its exact function is not fully
understood, experimental animal studies have revealed that HTT is essential for fetal development
and its absence is lethal [167]. HTT is involved in cytoskeleton anchoring, transport, cell signaling,
and vesicle trafficking [168]. In addition, HTT upregulates the expression of brain derived neurotrophic
factor (BDNF), inhibits caspase-3 and caspase-9, and protects against apoptosis [169]. A mutation
in the HTT gene leads to expansion of the CAG (Cystocine-Adenine-Guanine) repeats which leads
to elongation of polyQ in HTT protein and results in the accumulation of mHTT [170]. There is a
correlation between the number of CAG repeats and the age of onset of the disease [165]. In general,
more than 36 CAG repeats could trigger disease symptoms, and it is critical for its toxicity. Increase in
the number of CAG repeats will cause greater HTT deposition, which increases neurotoxicity [170].
For example, animal models of HD, such as R6/1 and R6/2 mice or YAC128 mice, which express a
larger CAG expansion, progressively develop cognitive, psychiatric and motor symptoms, which are
analogous to those observed in HD patients [171–174]. Therefore, both loss of function in the wild
type HTT and gain of function in the mutated form of HTT have been proposed to play a role in the
development of HD pathology [169].
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To date, the exact pathogenesis for the neuronal death in HD is not fully understood.
However, glutamate excitotoxicity [175], mitochondrial dysfunction [176], impaired protein
degradation, protein misfolding, caspase activation, transcriptional pathways dysregulation,
decrease of proteasome function and abnormality in proteolysis are among the major causes for this
disease [177].

Beneficial effects of Cur in Huntington Disease

Cur has been shown to neuroprotective effects in animal models of HD. For example, when we
fed chow containing 555 ppm Cur to CAG 140 knock-in HD mice, a significant decrease in
mHTT aggregates and increased striatal DARPP-32 and D1 receptor mRNAs, as well as an
amelioration of rearing deficits was observed [40]. Solid lipid nanoparticles (C-SLNs) given to
treated 3-nitropropionic-acid (3-NP) treated rats (a toxin which causes HD-like neuropathology
in rodents) resulted in a decrease of HD-like neurodegeneration, as well as significant increase in
the activity of mitochondrial complexes and cytochrome levels [178]. Furthermore, C-SLNs also
restored glutathione levels and superoxide dismutase (SOD) activity, decreasing lipid peroxidation,
protein carbonyl formation, ROS levels, and mitochondrial swelling. In addition, C-SLN-treated rats
showed significant improvements in neuromotor coordination, when compared with 3-NP-treated
rats [178]. Furthermore, chronic treatment with Cur (10-, 20- and 50-mg/kg, once daily for 8 days,
peritoneally) improved the motor and cognitive performances, reduced oxidative stress, and restored
succinate dehydrogenase activity, which is inhibited in the in 3-nitropropionic acid (3-NP) HD rat
model. An increase in Nrf2 (a key regulator for antioxidants enzyme expression) expression in
C-SLN-treated mice, compared to controls, has also been observed [179]. Cur treatment also restored
the down-regulated molecular chaperones (e.g. HSP40, HSP70) in HD. In addition, downregulated
brain-derived neurotrophic factor (BDNF) in HD was also restored by Cur-treatments [180] (Figure 21).
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In contrast, 3–5 µM of Cur can increase mHTT aggregation and mHTT-dependent cell death
and promote proteasomal dysfunction in the mHTT expressing cells, in comparison to control
cells [40,181,182]. Similarly, Jana and colleagues reported that Cur induced apoptosis through the
impairment of the ubiquitin-proteasome system [183]. They have demonstrated that the exposure
of Cur to the N2a cells causes a dose-dependent decrease in proteasome activity and an increase
in ubiquitinated proteins. They concluded that the Cur can induce more apoptosis in proliferative
cells than in differentiated cells, by decreasing the mitochondrial membrane potential, releasing
cytochrome-c into cytosol, and activating caspase-9 and caspase-3 [183]. Although systemic availability
of Cur is very low (~25 nM) after oral administration, it is assumed that low doses of Cur may not
increase mHTT aggregation, but rather provides neuroprotective effects, but further study is needed to
confirm this hypothesis.

6.4. Curcumin Therapy in Prion Diseases

Transmissible spongiform encephalopathies (TSE) or “prion” diseases are a group of rare,
fatal, progressive neurodegenerative disorder which affect mammals [184]. It is a spectrum of
diseases, which includes Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, Scrapie,
Kuru, Gersmann-Sträussler-Scheinker syndromes and fatal familial insomnia. In all these diseases
the “prion” proteins are transmitted from cell to cell and induce accumulation of misfolded “prion”
proteins (PrP) [184]. These accumulate as prion plaques, which can be observed throughout the CNS
and cause neurodegeneration. Basically, prion aggregates generate several “holes” or “vacuoles”
within the CNS, which make for a spongy neuronal architecture [185]. Prion disease can be genetic,
sporadic, or infectious [186]. The PrP can take on an α-helix-rich, pathogenic, and cellular forms
(PrPC), which can convert to a β-structure-rich, stable, insoluble, infectious, proteinase K-resistant
fibril conformation of prion protein (PrPSc) [184,185]. Although the mechanism of neuronal cell death
in prion disease is unclear, the accumulation of this insoluble PrPSc is thought to be the principal
reasons for dendritic or synaptic loss, as well as neurodegeneration, along with neuroinflammation in
the CNS [184].

6.5. Effects of Cur on Prion Disease

Several drugs, small molecules or compounds have been tested for inhibiting PrPSc aggregation,
but none of them have proven to be satisfactory for clinical use. Some recent research suggests that
Cur can inhibit PrPSc fibril formation in scrapie-infected neuroblastoma (scNB) cells [38,41]. It can
bind to non-native forms of PrP, thereby inhibiting prion fibril formation, without affecting native
PrP [130]. Low doses of Cur (10 nM) can decrease ROS levels and effectively prevent PrPSc-induced
apoptosis [147].

7. Biphasic or Dose-Dependent Effects of Curcumin

Cur shows its biphasic or dose-dependent effects in our body, which means lower doses, show
neuroprotection, whereas higher doses may be toxic to cells [147]. Several in vitro and in vivo studies
suggest that Cur has beneficial effects, including potent antioxidant, anti-inflammatory, anti-amyloid
properties at relatively lower doses (0.1–1 µM). Perhaps due to its limited bioavailability, Cur does
not reach high concentrations in all tissues and organs. Therefore, it is assumed that the beneficial
effects are due to low levels [147]. In contrast, higher doses (>5 µM) may induce colon or lung cancer
or other side effects, such as inhibition of proteasomal function, which can occur at levels above a
3 µM concentration [183]. For example, ≥3 µM of Cur can increase mHTT-induced neurotoxicity in an
in vitro model of HD [183]. It has been demonstrated that about 10 µg/mL of turmeric extract caused
a dose- and time-dependent induction of chromosome aberrations, as well as DNA damage in several
mammalian cell lines [187]. Even doses as small as 2.5–5 µg/mL of Cur have been shown to induce
both mitochondrial- and the nuclear-DNA damage [188]. These reports raise a major concern about
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the safety of Cur therapy in different diseases. A recent report has also shown that Cur can promote
lung cancer in mice [189].

Interestingly, several studies also demonstrated that the higher concentration of Cur (5–50 µM)
can be used to kill cancer cells, although it requires the cells to be treated with Cur for several
hours or days [190]. For example, in one of our recent in vitro experiments, we treated glioblastoma
cells (U-87 Mg, derived from human cells) with 25 µM of Cur for 24–72 h, and found a significant
increase in DNA fragmentation and apoptotic death [14] (Figure 22). These data support many
previous observations and suggest that higher concentrations of Cur can be used to kill cancer cells.
Conversely, most therapeutic applications for Cur require low doses. However, when administered
orally, achieving therapeutically significant concentrations of Cur outside the GI-tract is practically
impossible because of its poor bioavailability. However, the Cur bioavailability in animal models
of AD [12,13,108] and HD [40] following i.p. or oral administration was about 250–350 nM in the
brain tissue. Also, when we imaged Cur-treated AD mouse brain tissue we observed that Cur
was colocalized with Aβ profusely [13] and decreased Aβ plaques. This indicates that at least
a few hundred-nM concentrations of unmodified Cur were available following either oral or i.p.
administration of lipidated formula of Cur interact with Aβ, p-tau and prevent AD pathologies,
such as neuroinflammation, thus reducing cognitive deficits [10–13]. Therefore, achieving optimal
concentrations of Cur to the brain by oral administration while reducing the possibility of toxic effects
to the periphery, needs to be carefully studied before widespread use of orally administered Cur can
be advocated.
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8. Recommended Doses and Limitations of Cur Therapy

To understand the beneficial roles of Cur, it is essential to evaluate its pharmacokinetics or
pharmacodynamics after its administration in humans. Based on previous clinical studies, it has
been demonstrated that 8 g per day of short-term Cur therapy has no significant detrimental
effects [70]. Toxicological evaluations revealed that Cur is found to be pharmacologically safe,
even up to 12 g per day, as reported by several animal studies and in phase-I clinical trials [32,70].
Similarly, another phase-1 human trial, with 8 g of Cur per day for three months, revealed no toxic
effects [7]. However, a few studies have indicated that high doses of Cur can cause highly variable
adverse side effects, including gastrointestinal discomfort, chest tightness, skin rashes, and swollen
skin, as well as some allergic reactions, such as dermatitis [191] (Table 8).
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Table 8. Side effects of Cur therapy when intake orally.

Parameter Side Effects Ref.

General effects Gastrointestinal discomfort, chest tightness, skin rashes, and swollen
skin, allergic reactions or dermatitis, nausea, and diarrhea [192]

Blood clotting Slow down blood clotting process [193]

Gall bladder Increase gallstones contraction and increase bile duct obstruction [192]

Pregnancy and postnatal
complications

Stimulate the uterus or promote a menstrual period. Breast feeding
women not recommended [8]

Stomach problems Increased stomach acid secretion if taken with antacid drugs [8]

In human studies with Cur, doses of 0.9–3.6 g per day for 1–4 months caused some adverse
effects, including nausea and diarrhea, with an increase in serum alkaline phosphatase and lactate
dehydrogenase [194]. Despite reports of possible adverse effects, most studies have revealed significant
beneficial effects with Cur [12,30,39,45,46,57,58,69,135,144,150,160,182] (Table 9). For example, one of
our previous studies with the 3XTg mouse model of AD showed that 600 nM is sufficient to reduce
AD-like pathological symptoms [10,12]. Extrapolation of animal studies to clinical trials also revealed
that an oral supplementation of Cur in the range of 80–500 mg per day was recommended to
obtain these beneficial effects in humans, which means a daily intake of raw turmeric would be
2–4 g [10,126]. Furthermore, chronic intake of Cur sometimes may be hepatotoxic. Therefore, a person
with liver diseases, such as cirrhosis, biliary tract obstruction, gallstones, obstructive jaundice and
acute biliary colic, or those are under prescribed medication for hepatic problems are counter-indicated
for Cur therapy, because Cur can stimulate bile secretion [74]. In fact, supplementation of even
20–40 mg of Cur per day can increase the gallbladder contractions in healthy people [195,196].
Similarly, alcoholics or heavy drinkers may not receive the benefits of this therapy. Furthermore,
the individual taking any blood thinning agents, non-steroidal anti-inflammatory (NSAIDs) drugs,
or reserpine are recommended not to take Cur, because, it can interact with these drugs [10,33,126].
However, for therapeutic purposes, dietary Cur is very unstable in most of the body fluids, and
because of its poor water solubility and limited tissue bioavailability, it is highly recommended
to mix Cur with oil or milk to enhance its absorption and metabolism [8]. Although the vast
majority of animal studies and clinical trials using Cur has resulted in more beneficial than adverse
effects [12,30,39,45,46,57,58,69,135,144,150,160,182], its use must be tempered by possible toxic effects
at high doses.
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Table 9. List of a few clinical trials with Cur in Alzheimer’s disease.

Study ID Curcumin Molecule Cohort Dose Duration Outcomes Ref.

Baum et al. NCT00164749 Cur + gingko AD:50+ year, n= 30 1, 4 g/day 6 months No differences in Aβ levels between treatments
or MMSE scores [71]

Ringman et al. (ACT00099710) Cur C3 complex Mid/Moderate AD, 49 y+,
n = 30 2, 4 g/day 24 weeks

No differences detected between treatment
groups in biomarkers measured,
low bioavailability

[197]

Hishikawa et al. Tumeric capsule Severe AD, n = 3 100 mg/day 12 months tested
after 12 weeks

MMSE and NPIQ; score on NPIQ decreased
significantly, MMSE increased in 1/3 [198]

Poncha (NCT01001637) Longvida Moderate-severe AD, 50–80 y,
n = 160 2, 3 g/twice daily 2 months Efficacy and safety: blood and cognition [199]

Martin and Goozee
(ACTRN12613000681752)

Biocurucmax
(BCM-95)

Retirement, healthy,
65–95, n = 100 500 mg/thrice/day 12 months Cognition, blood biomarkers, brain imaging,

retinal imaging [199]

Martin (ACTRN12611000437965) Biocurucmax
(BCM-95)

Community living, healthy,
55–75, n = 100 500 mg/thrice/day 12 months Cognition, blood biomarkers, life style,

brain imaging [199]

Small et al. (NCT01383161) Tetracurcumin
CR-031PTM MCI, normal aging, n = 132 90 mg/twice/day 18 months Cognition, blood genetic profile [200]

Frautschy (NCT018811381) Longvida and Yoga Subjective cognitive
complainers, 55–90, n = 80 400 mg/twice/daily 6 months Biochemistry, cognition, brain imaging [199]

Cox et al. (ACTRN12612001027808) LongvidaTM Healthy and cognitive
decline, 65–80, n= 60 400, 800 mg/daily 4weeks 8 weeks Cognition, mood and anxiety,

blood biomarkers, MRI [201]

NCT00595582 Curcumin bioperine MCI, 55–85, n = 10 900 mg/twice/daily 24 months Cognition and size of metabolic lesion by PET [199]

ACTRN12614001024639 BCM-95 Healthy and MCI, 65–90
years, n = 48 500 mg/twice/daily 3 months Gene regulation and expression, and cognition [199]

ACTRN12613000367741 LongvidaTM
Healthy, MCI,
mild/moderate AD, 50 years,
n = 200

20 g/daily 7 days Diagnostics, Curcumin fluorescent retinal
imaging of Aβ plaques [199]



Int. J. Mol. Sci. 2018, 19, 1637 30 of 42

9. Future Perspective of Curcumin Research

Numerous studies have been conducted to test the potential of Cur to prevent or treat different
neurological diseases. However, several reports have raised questions about its safety and efficacy,
especially at high doses, which may be harmful. Some researchers recommend limiting the daily
intake of Cur to 1 g per day, whereas other studies have shown no side effects, even up to 12 g
/day. However, our review of the studies using Cur for treating neurological disorders underscore
a few critical observations. First, the formula of Cur can make a difference. Many researchers
used whole turmeric extract, while others used different lipidated formulae of Cur, along with
nano-Cur, and their data needs to be directly compared with the effects of natural Cur. In addition,
the purity of Cur, along with a detailed description of the extraction method and sources are
critical variables that need to be considered when making determination about the efficacy of Cur
therapies. Second, the difference between Cur and curcuminoids needs to be considered. Many
researchers use the term “curcuminoid” with Cur, but curcuminoid has two additional compounds
(bis-methoxy and de-bismethoxy Cur). Therefore, this clarification needs to be considered when
interpreting the result of such studies. Third, the mode of administration is important: It is critical
to know how Cur is administered, because the PK and PD of Cur can vary with the route of
administration, which can significantly affect the efficacy of the treatment. Fourth, the duration
of Cur therapy can affect its efficacy: Both short- and long-term Cur therapy have shown mixed
effects. Many scientists have reported short-term beneficial effects, whereas the potential of
long-term studies to reveal toxic effects may be underreported, which underscores the need for more
work using chronic administration of Cur. Overall, most scientists agree that Cur has enormous
potential as an effective nutraceutical with advantages of having relatively low toxicity, being quite
inexpensive, and easily obtained [12,30,39,45,46,57,58,69,135,144,150,160,182]. However, due to its
poor bioavailability, different lipidated forms continue to be developed, which is providing increasingly
greater bioavailability and efficacy.

10. Conclusions

Neurodegenerative diseases are age-related complicated disorders with complex neuropathological
characteristics. They develop progressively, and oftentimes significant neuropathology precedes
any overt clinical symptoms. Neuronal damage and cognitive deficits or impairment of motor
coordination are the major problems in these diseases. Because of its pleotropic actions on the
nervous system, including anti-amyloid, anti-inflammatory, and anti-oxidant properties, Cur is a
promising candidate for targeting protein misfolding neurological diseases. Furthermore, it is safe
and inexpensive, readily available and can effectively penetrate the blood-brain barrier and neuronal
membranes. We have provided detailed information on the anti-amyloid properties of Cur in major
neurodegenerative disorders, such as AD, PD, HD, and prion diseases. Collectively, the information
available from reviewing the literature on the therapeutic potential of Cur can provide helpful insights
into the potential clinical utility of Cur for treating neurological diseases.
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Abbreviations

Cur Curcumin
CNS Central nervous system
AD Alzheimer disease
SLN Solid lipid nanoparticles
DMC Demethoxycurucmin
BDMC Bisdemethoxycurucmin
IUPAC International Union of Pure and Applied Chemistry
DMSO Dimethyl-sulfoxide
DMF Dimethyl formamide
PK Pharmacokinetics
PD Pharmacodynamics
THC Tetrahydrocurcumin
HHC Hexahydrocurcumin
i.v. Intravenously
i.p. Intraperitonally
OHC Octahydrocurcumin
Aβ Amyloid β-protein
α-syn Alfa-synuclein
HTT Huntingtin
PD Parkinson’s disease
HD Huntington’s disease
p-tau Phosphorylated tau
BBB Blood brain barrier
PUFA Polyunsaturated fatty acids
ROS Reactive oxygen species
GSH Glutathione (reduced)
SOD Superoxide dismutase
GPx Glutathione peroxidase
GST Glutathione S-transferase
NF-κB Nuclear factor κ-light-chain-enhancer of activated B cells transcription factor
COX Cyclooxygenase
LOX Lipoxygenase
TNF Tumor necrosis factor
IL Interleukin
PPARγ Peroxisome proliferator-activated receptor gamma
iNOS Induced nitric oxide synthase
HSP Heat shock protein
NGF Nerve growth factor
BDNF Brain derived neurotropic factor
GDNF Glial derived neurotropic factor
PDGF Platelet derived neurotropic factor
PSD Post-synaptic density protein
HAT Histone acetyltransferase
BMECs Brain microvascular endothelial cells
GI Gastrointestinal
EGCG Epigallocatechin gallate
GMO Genetically modified organism
PLGA Poly lactic-co-glycolic acid
BCM-95 Biocurcumax-95
IC Inhibitory concentration
DLS Dynamic light scattering
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SEM Scanning electron microscope
FTIR Fourier transforms infrared spectroscopy
ER Endoplasmic reticulum
AuNPs Gold nanoparticles
AgNPs Silver nanocomposite
Cds Cyclodextrins
SLNP Solid lipid nanoparticles
nm Nanometer
nM Nanomolar
ppm Parts-per-million
SLCP Solid lipid Cur particle
NFT Neurofibrillary tangle
BACE β-secretase
APP Amyloid precursor protein
PHF Pair helical filaments
GSK-3β Glycogen synthase kinase-3β
MAPK Mitogen-activated protein kinase
Cdk5 Cyclin-dependent kinase 5
ERK2 Extracellular signal-regulated kinase 2
MARK Microtubule affinity-regulating kinase
SADK SAD-kinase
PKA Protein kinase A
CaMKII Calcium/calmodulin-dependent protein kinase II
JNKc Jun N-terminal kinase
IRS Insulin receptor substrate
GFAP Glial fibrillary acidic protein
Iba-1 Ionized calcium-binding adapter molecule 1
PET Positron emission tomography
NIR Near infrared
PIB Pittsburgh compound B
FDG 2-Deoxy-2-[18F] fluoroglucose
SNpc Substantia nigra pars compacta
DA Dopamine
LBs Lewy bodies
2D-NMR Two-dimensional nuclear magnetic resonance
MAO Monoamine oxidase
PolyQ Poly-glutamine
mHTT Mutated huntingtin protein
CAG Cytosine-adenine-guanine
YAC Yeast artificial chromosome
DARPP Dopamine-and cAMP-regulated neuronal phosphoprotein
TSE Transmissible spongiform encephalopathies
PrP Prion protein
PrPC Cellular form of prion protein
NSAIDs Non-steroidal anti-inflammatory drugs
NPI-Q Neuropsychiatric Inventory–Questionnaire
PBS Phosphate Buffer Saline
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